ing
in

Explori
Bitcol

Tomasz Jadachowski

.03.2019

14

Content

e Bitcoin genesis
 Blockchain
 Mining
 Transactions

* Security
 Future

Introduction

Bitcon (BTC) mysteriuos creator
Digital money

Censorship resistance
Decentralization

Secure store of value

There could be max 21M Bitcoins
Every Bitcoin could be divided to
100 million satoshis

0.00000001 BTC = 1 satoshi

Blockchain

N\ 4
4 Block 10 Block 11 A Block 12 A
Prev_Hash Timestamp || | Prev_Hash Timestamp || p=p| Prev_Hash Timestamp
Tx_Root Nonce Tx_Root Nonce Tx_Root Nonce
\ —/ \Z K —/ \ —
P 4 N\
Hash01 Hash23

Merkel's tree —> i T 1 N\

HashO Hash1l Hash2 Hash3

1 1 1 1

Tx0 Tx1 Tx2 Tx3

Mining

* PoW: sha256(sha256(header)) < Difficulty

* Block generation 10 minutes (winning miner will
have reward in coinbase transaction)

* Difficulty adjustment every 2016 block

* Application specific integrated circuit (ASIC)

* Current networka hash rate ~40 eksa h/s

* Miners choose transactions to confirm

* Halving every 210000 blocks (4 years)

* Maximum block size 1Mb

* Orphan blocks

Solo CKPool: 0.2% -
KanoPool: 0.7% -

SigmaPool.com: 0.7% Unknown: 20%

Bixin: 11% ~
Bitcoin.com: 1L.6% y
DPOOL: 2.3%

)7
BitFury: 2.9% /

BitClub Network: 3.2%
ViaBTC: 7.6%

BTC.TOP:9.2% —

T BTC.com: 17.5%

SlushPool: 10.6% —

AntPool: 11.4%

F2Pool: 10.8%

Elliptic curve

Bitcoin uses elliptic curve secp256k1 (instead of
recommended by NIST secp256rl, beause it was created by
NSA and it is not clear why it has choosen parameters):
yN2=x"3+7

p=2"256 - 2"32 - 2"9 - 2"8 - 27 - 2"6 -2 - 1

N = 27256 - 432420386565659656852420866394968145599
G — generator point

Elliptic curve discrete logarithm problem, given points
G and Q, find such integer x, that:
G*x=Q (x Is priavate key, Q is public key)

Why it is difficult? For example for every 0 < x <n,
there exists y, which fulfill equation G * x *y = G,
Easy with quantum computers (Shor's algorithm).

Transactions

~

50 ETC—-)[In] Out » 0.5BTC 05BTC=—t> In [Out]~—.‘p 0.8 BTC

Transaction

Qut > 495BTC 0. 1BTC=—> In
o — —
S

0.2BTC=—> In

| —

. J
Transaction must have at least one input and at least one output. When inputs

exceed payment value, usually new address is created to store change. If we

choose to send change to original address, those funds will have exposed public
key. More inputs and/or outputs will result in bigger transaction size.

LAgs Transactions

P2PK (Pay to public key) - no address,
used in early BTC days

P2PKH (Pay to public key hash) - address
starts with 1, most popular

P2SH (Pay to script hash) - address starts
with 3

P2PWKH and P2PWSH - address starts with
bcl, coded with bech32, still need more
adoption. P2PWSH addresses are longer (they
use sha256 instead hash160 to create
address digest)

Transactions

aw

.id = reverse_byte_hex(

double aZb6(raw_transaction_data)

5

raw_transaction_data.hex()

i
%

Transactions

Field Description Size

Version

currently 1 4 bytes
o y !

If present, always 0001, and indicates the presence of

Fl) optional 2 byte arra
= witness data - vt .
In-counter | positive integer VI = Varint 1-9 bytes
. list of the first input of the first transaction is also called <in-counter=-many
7 inputs "coinbase” (its content was ignored in earlier versions) inputs
Out- L
positive integer VI = Varint 1-9 bytes
counter
list of the outputs of the first transaction spend the mined <gut-counter=-many
outputs bitcoins for the block outputs
. A list of witnesses, 1 for each input, omitted if flag above | variable, see
Witnesses |, . | -
IS missing Segregated Witness
ol ‘m on if non-zero and sequence numbers are < 0XFFFFFFFF:
*‘@ﬂ#’-‘}@y lock_time . " |4 bytes

A\ block height or timestamp when transaction is final

P2PKH transaction

_ i
W
h

scriptPubKey = OP DUP + OP_HASH160 + <pubKeyHash> +
OP_EQUALVERIFY + OP_CHECKSIG
scriptSig = <sig> + <pubKey>

<pubKeyHash> = hash160(encoded public_key),
where hashl1l60(m) = ripemd160(sha256(m))
addressData = b'"\x00' + <pubKeyHash>
checkSum = sha256(sha256(address _data)[:-4]
Address = Base58 (address _data + checkSum)

Exemplary address: 12ib7dApVFvg82TXKycWBNpN8kFyiAN1dr
Corresponding public key (point on elliptic curve):

(96953063599923793356065023910106792740284067034392039319548634253844580007549,
24213599371259323050868340559734230940120001082991520973823206482901563403021)

Stack

Empty.

<sig> <pubKey=

<sig> <pubKey>
2| <pubKey=

<sig> <pubKey>
<pubHashA:=

<sig> <pubKey>
<pubHashA>
<pubKeyHash=>

<sig> <pubKey>

true

Script

<sig> <pubKey> OP_DUP OP_HASH160
<pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

OP_DUP OP_HASH160 <pubKeyHash>
OP_EQUALVERIFY OP_CHECKSIG

OP_HASH160 <pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

<pubKeyHash> OP_EQUALVERIFY
OP_CHECKSIG

OP_EQUALVERIFY OP_CHECKSIG

OP_CHECKSIG

Empty.

P2PKH Transaction

Description

scriptSig and scriptPubKey
are combined.

Constants are added to the
stack.

Top stack item is duplicated.

Top stack item is hashed.

Constant added.

Equality is checked between
the top two stack items.

Signature is checked for top
two stack items.

P2SH transaction

2%

script = OP_HASH160 + <scriptHash> + OP_EQUAL
unlocking_script - complementary scirpt, concatenated with “script” must
evaluate to true

<scriptHash> = Hash160(SCRIPT)
addressData = b'"\x05"' + <scriptHash>
checkSum = sha256(sha256(address data)[:-4]
Address = Base58 (address data + checkSum)

Exemplary address: 37k7toV1INv4DfMmQbmZ8KuZDQCYK9Xx5Kpz

Corresponding script used to generate it:

OP_2DUP OP_EQUAL OP_NOT OP_VERIFY OP_SHA1 OP_SWAP OP_SHA1 OP_EQUAL
This script was created as a bount to find two different messages giving the same
SHA1 hash value. Bounty was already claimed.

Future

Lightning network

Shnorr signature (the main reason that Bitcoin did not
originally use Schnorr signatures is that Schnorr was not
standardized, and was not available in common crypto
libraries. An advantage of this method is that, if parties
cooperate, we can generate a single signature that validates
two or more separate transactions)

Bulletproofs (zero knowledge proofs)

Side chains

Thank you!

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16

