GELI — Disk Encryption in FreeBSD

Michat Borysiak
borysiam@gmail.com

Al %
G, -85
5@4 I’%QQ‘"“'E‘;

SEVESF
ﬁi“rqs:é"

&3‘ ’ Juil
Craitgrs @af%
0
==
5
G
QRO L
SO e
0

/f’;%s?’f

2
S,
O

November 15, 2018

borysiam@gmail.com

Disk encryption facilities in FreeBSD

v

GBDE (GEOM-based Disk Encryption)

FreeBSD 5, 2003

Poul-Henning Kamp

GEOM module in the kernel gbde (4)
User space tool gbde(8)

Creates new device with .bde suffix

GELI (GEOM eli)

FreeBSD 6, 2005

Pawet Jakub Dawidek

GEOM module in the kernel

User space tool geli(8)

Creates new device with .eli suffix

v
vV vy VYT VvVYy vV vy vVvyYVvyy

v

Operates on sector level

v

New devices are created to allow plain text access to the data

The GEOM framework

» Standardized way to access storage layers

» FreeBSD 5, 2003

» Poul-Henning Kamp

> Set of GEOM classes

» Classes can be freely stackable in any order

» Abstraction of an I/O request transformation

» Transformations: striping, mirroring, partitioning, encryption
» Providers and consumers

» Auto discovery

GBDE

Master key (2048 random bits) is located in a random place
on the GEOM provider, and its location is stored in a lock file

The lock file is encrypted using a user password and should
be stored separately

Up to 4 independent user secrets (lock sectors)

Each sector is encrypted using AES-CBC-128 and a random
sector key

The sector key is encrypted using a key derived from the
master key and the sector number

Disk space overhead to store per-sector keys

Non-atomic disk updates, since sector keys are stored
separately from data

Does not support mounting encrypted device in the / file
system

GELI

Simple sector-to-sector encryption

To perform symmetric cryptography on sectors a random
master key is chosen

The master key is encrypted using user key and stored in
the last sector of the GEOM provider

Up to two encrypted copies of the master key can be stored
in the sector

User key consists of up to two components: a user
passphrase and a key file

Passphrase is strengthened using PKCS #b5: Password-Based
Cryptography Specification 2.0 (RFC 2898)

Can perform verification of data integrity

GELI

Automatically takes advantage of hardware acceleration of
cryptographic operations thanks to utilization of the
crypto(9) framework

Supports multiple encryption algorithms (AES-XTS,
AES-CBS, Blowfish-CBC, Camellia-CBC, 3DES-CBC) and
different key lengths

Allows to mount encrypted device in the / file system

Since FreeBSD 11 supports booting from encrypted partitions

GELI full disk encryption before FreeBSD 11

» Some part of the system had to be left unencrypted
(i.e. /boot directory)

» Together with a key file, this part was placed on a separate
device which user always carried around (e.g. flash memory)

» Swap partition encrypted using one-time key

FS type Mount point | Device
freebsd-boot /dev/dalp1
freebsd-zfs | /boot /dev/da0p2
freebsd-swap /dev/adalpl
/dev/adalpl.eli
freebsd-zfs /dev/adalp2
/ /dev/adalp2.eli

GELI full disk encryption since FreeBSD 11

» Thanks to Allan Jude boot loader can now perform GELI
decryption

» Whole system can be installed on one ZFS pool
» Allows ZFS BE to be used with full disk encryption

FS Type Mount point | Device
freebsd-boot /dev/adalp1l
freebsd-zfs /dev/adalp2
/ /dev/adalp2.eli
freebsd-swap /dev/adalp3
/dev/adalp3.eli

GELI encryption in a ZFS volume

Create a block device.
zfs create -V 256M zroot/test

Create a random 4k key file.
dd if=/dev/random of=/tmp/test.key bs=4k count=1

Initialize and attach encrypted disk.
geli init -K /tmp/test.key /dev/zvol/zroot/test
geli attach -k /tmp/test.key /dev/zvol/zroot/test

A new device appeared.
ls /dev/zvol/zroot/test.eli

We can create a new filesystem on the device.
zpool create -m /tmp/ztest ztest /dev/zvol/zroot/test.eli

GELI backup and restore metadata

Backup GELI metadata.
geli backup /dev/zvol/zroot/test /tmp/test.eli

Clear GELI metadata.
geli clear /dev/zvol/zroot/test

Try to attach GELI device. It is not possible, since GELI
cannot find its metadata on the device.
geli attach -k /tmp/test.key /dev/zvol/zroot/test

Restore GELI metadata.
geli restore /tmp/test.eli /dev/zvol/zroot/test

Now we can attach GELI device and import the pool.
geli attach -k /tmp/test.key /dev/zvol/zroot/test
zpool import

GELI resize the provider

Resize ZFS volume.
zfs set volsize=512M zroot/test

Now we cannot attach GELI device, because GELI cannot
find its metadata on the device.
geli attach /dev/zvol/zroot/test

We need to inform GELI about previous size of the device.
geli resize -s 266M /dev/zvol/zroot/test

Now we can attach GELI device and import the pool.
geli attach -k /tmp/test.key /dev/zvol/zroot/test
zpool import

Thank you for your attention!

