
GELI — Disk Encryption in FreeBSD

Micha l Borysiak
borysiam@gmail.com

November 15, 2018

borysiam@gmail.com

Disk encryption facilities in FreeBSD

I GBDE (GEOM-based Disk Encryption)
I FreeBSD 5, 2003
I Poul-Henning Kamp
I GEOM module in the kernel gbde(4)
I User space tool gbde(8)
I Creates new device with .bde suffix

I GELI (GEOM eli)
I FreeBSD 6, 2005
I Pawe l Jakub Dawidek
I GEOM module in the kernel
I User space tool geli(8)
I Creates new device with .eli suffix

I Operates on sector level

I New devices are created to allow plain text access to the data

The GEOM framework

I Standardized way to access storage layers

I FreeBSD 5, 2003

I Poul-Henning Kamp

I Set of GEOM classes

I Classes can be freely stackable in any order

I Abstraction of an I/O request transformation

I Transformations: striping, mirroring, partitioning, encryption

I Providers and consumers

I Auto discovery

GBDE

I Master key (2048 random bits) is located in a random place
on the GEOM provider, and its location is stored in a lock file

I The lock file is encrypted using a user password and should
be stored separately

I Up to 4 independent user secrets (lock sectors)

I Each sector is encrypted using AES-CBC-128 and a random
sector key

I The sector key is encrypted using a key derived from the
master key and the sector number

I Disk space overhead to store per-sector keys

I Non-atomic disk updates, since sector keys are stored
separately from data

I Does not support mounting encrypted device in the / file
system

GELI

I Simple sector-to-sector encryption

I To perform symmetric cryptography on sectors a random
master key is chosen

I The master key is encrypted using user key and stored in
the last sector of the GEOM provider

I Up to two encrypted copies of the master key can be stored
in the sector

I User key consists of up to two components: a user
passphrase and a key file

I Passphrase is strengthened using PKCS #5: Password-Based
Cryptography Specification 2.0 (RFC 2898)

I Can perform verification of data integrity

GELI

I Automatically takes advantage of hardware acceleration of
cryptographic operations thanks to utilization of the
crypto(9) framework

I Supports multiple encryption algorithms (AES-XTS,
AES-CBS, Blowfish-CBC, Camellia-CBC, 3DES-CBC) and
different key lengths

I Allows to mount encrypted device in the / file system

I Since FreeBSD 11 supports booting from encrypted partitions

GELI full disk encryption before FreeBSD 11

I Some part of the system had to be left unencrypted
(i.e. /boot directory)

I Together with a key file, this part was placed on a separate
device which user always carried around (e.g. flash memory)

I Swap partition encrypted using one-time key

FS type Mount point Device

freebsd-boot /dev/da0p1

freebsd-zfs /boot /dev/da0p2

freebsd-swap /dev/ada0p1

/dev/ada0p1.eli

freebsd-zfs /dev/ada0p2

/ /dev/ada0p2.eli

GELI full disk encryption since FreeBSD 11

I Thanks to Allan Jude boot loader can now perform GELI
decryption

I Whole system can be installed on one ZFS pool

I Allows ZFS BE to be used with full disk encryption

FS Type Mount point Device

freebsd-boot /dev/ada0p1

freebsd-zfs /dev/ada0p2

/ /dev/ada0p2.eli

freebsd-swap /dev/ada0p3

/dev/ada0p3.eli

GELI encryption in a ZFS volume

Create a block device.

zfs create -V 256M zroot/test

Create a random 4k key file.

dd if=/dev/random of=/tmp/test.key bs=4k count=1

Initialize and attach encrypted disk.

geli init -K /tmp/test.key /dev/zvol/zroot/test

geli attach -k /tmp/test.key /dev/zvol/zroot/test

A new device appeared.

ls /dev/zvol/zroot/test.eli

We can create a new filesystem on the device.

zpool create -m /tmp/ztest ztest /dev/zvol/zroot/test.eli

GELI backup and restore metadata

Backup GELI metadata.

geli backup /dev/zvol/zroot/test /tmp/test.eli

Clear GELI metadata.

geli clear /dev/zvol/zroot/test

Try to attach GELI device. It is not possible, since GELI

cannot find its metadata on the device.

geli attach -k /tmp/test.key /dev/zvol/zroot/test

Restore GELI metadata.

geli restore /tmp/test.eli /dev/zvol/zroot/test

Now we can attach GELI device and import the pool.

geli attach -k /tmp/test.key /dev/zvol/zroot/test

zpool import

GELI resize the provider

Resize ZFS volume.

zfs set volsize=512M zroot/test

Now we cannot attach GELI device, because GELI cannot

find its metadata on the device.

geli attach /dev/zvol/zroot/test

We need to inform GELI about previous size of the device.

geli resize -s 256M /dev/zvol/zroot/test

Now we can attach GELI device and import the pool.

geli attach -k /tmp/test.key /dev/zvol/zroot/test

zpool import

Thank you for your attention!

